Tradeoffs in timber, carbon, and cash flow under alternative management systems for Douglas-Fir in the Pacific Northwest.
Abstract
Forest management choices offer significant potential to mitigate global climate change and biodiversity loss. To illuminate tradeoffs relevant to policymakers, forest sector stakeholders, and consumers of forest products, we utilize three Key Performance Indicators—average carbon storage in the forest and wood products; cumulative timber output; and discounted cash flow—to compare four alternative management scenarios for Douglas-fir forests on 64 parcels across western Oregon and Washington. These scenarios are designed to meet one of two alternative management objectives: (i) maximize Net Present Value; or (ii) maximize sustained timber yield; according to one of two alternative sets of forest practice constraints: (i) compliance with minimum Oregon/Washington Forest Practices Act (FPA) rules; or (ii) two key requirements (increased green tree retention and wider riparian buffers) of Forest Stewardship Council (FSC) certification. Improved performance in terms of carbon storage for these alternatives generally also corresponded with reduced Net Present Value and timber yields. The gap between FSC and FPA performance indicators was wider in Oregon than Washington, which is primarily attributed to the higher level of stream protection required under Washington versus Oregon FPA rules. We observed consistently higher average carbon storage per cumulative timber output among FSC scenarios relative to business-as-usual, indicating FSC-certified wood carries an embedded carbon benefit. Our findings highlight options for targeted policies to incentivize management that increases carbon storage and minimizes disruptions in timber output, as well as for narrowing the financial gap (or opportunity cost) that would be involved in a transition away from contemporary common practice on industrial timberlands in the coastal Douglas-fir forests of the Pacific Northwest.